

Agilent Technologies

Back to Basics: Signal Generation

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Agenda

- The need for creating test signals
 - Aerospace Defense to Communications
- Generating Signals
 - No modulation
 - Analog Modulation
 - Composite Modulation
- Signal Generator Architecture
- Signal Simulation Solutions
- Summary

From Movies

Nov. 1940 - News Flash

Disney releases Fantasia with **"Fantasound"**, a new audio stereophonic sound system

Walt Disney orders eight audio oscillators (HP 200B) for the sound production of the movie Fantasia.

The 200B was used to calibrate the breakthrough sound system of Walt Disney's celebrated animated film, Fantasia

Stimulus/Response Testing

Aerospace Defense

To Mobile Communications....

TESTING DIGITAL TRANSMITTERS and RECEIVERS

Agilent Technologies

Agenda

- The need for creating test signals
 - Aerospace Defense to Communications

Generating Signals

- No modulation
- Analog Modulation
- Composite Modulation
- Signal Generator Architecture
- Signal Simulation Solutions
- Summary

The sine wave is the basic, non-modulated signal: It is useful for stimulus/response testing of linear components and for Local Oscillator substitution. Available frequencies range from low RF to Millimeter.

Modulation: Where the Information Resides

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Amplitude Modulation

Important Characteristics for Amplitude Modulation

- Modulation frequency (rate)
- Depth of modulation (Mod Index)
- Linear AM (%)
- Log AM (dB)
- Sensitivity (depth/volt)
- Distortion %

Frequency Modulation $V(t) = A \cos[2\pi f_c t + \beta \sin 2\pi F_m t]$

 β is the modulation index, where $\beta = \Delta F_{\text{dev}} \, / \, F_{\text{m}}$

Important Characteristics for Frequency Modulation

- Frequency Deviation (ΔFdev)
- Modulation Frequency (Fm)
- Accuracy
- Resolution
- Distortion (%)
- Sensitivity (dev/volt)

$V(t) = A \cos[2\pi f_c t + \beta 2\pi F_m t]$ Where $\beta = \Delta \theta$, the peak phase deviation

Important Characteristics for Phase Modulation

- Phase deviation ($\Delta \theta$)
- Modulation Rate (Fm)
- Accuracy
- Resolution
- Distortion (%)
- Sensitivity (dev/volt)

Where are Phase Modulated signals used?

- PSK (early digital 1010)
- Radar (pulse coding)

Copyright Agilent 1 Nov 2012

Simultaneous modulation of two Mod Types

Independent FM and Pulse Modulation

FM during the pulse = chirp

32 QAM Constellation Diagram

Integrated IQ Modulator

Anticipate ____Accelerate ____Achieve

Vector Signal Changes or Modifications

Anticipate ____Accelerate ____Achieve

- Project Signals to "I" and "Q" Axes
- Polar to Rectangular Conversion
- IQ Plane Shows 2 Things:
 - What the modulated carrier is doing relative to the unmodulated carrier.
 - What baseband I and Q inputs are required to produce the modulated carrier

Anticipate ____Accelerate ____Achieve

Transmitting Digital Data -- Bits vs Symbols

Transmitting Digital Bits (f 1 = 0, f 2 = 1)

Symbol = Groups/blocks of Bits 2 bits/symbol (00 01 10 11) 3 bits/symbol (000 001) 4 bits/symbol (0000 0001 ..)

2/ S Main lobe width is 2 Symbol rate

Anticipate ____Accelerate ____Achieve

Digital Modulation Characteristics

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Vector Modulation - Important Characteristics

- Mobile Digital Communications
- Modern Radars

Agenda

- The need for creating test signals
 - Aerospace Defense to Communications
- Generating Signals
 - No modulation
 - Analog Modulation
 - Composite Modulation
- Signal Generator Architecture
- Signal Simulation Solutions
- Summary

Signal Generator Architecture

Basic CW Signals

- Block Diagram (RF and Microwave)
- Specifications
- Applications

Analog Signals

- •Block Diagram (AM, FM, PM, Pulse)
- Applications
- **Vector Signals**
 - •Block Diagram (IQ)
 - Applications

Reference Section

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Output Section

• ALC

•maintains level output power by adding/subtracting power as needed

 Output Attenuator

 mechanical or electronic
 provides attenuation to achieve wide output range (e.g. -127 dBm to +23 dBm)

Anticipate ____Accelerate ____Achieve

Frequency

 F_{min} to F_{max} Range Resolution Smallest frequency increment How close is the indicated frequency Accuracy to the actual frequency? Switching Speed How quickly can you change from one frequency to another? ncertainty Accuracy = f_{CW} * t_{aging} * t_{cal} CW frequency = 1 GHz aging rate = 0.152 ppm/year time since last calibrated = 1 year Frequency 152 Hz

Power

- P_{min} to P_{max}
 Smallest amplitude increment
 How close is the indicated amplitude to the actual amplitude?
 How quickly can you change from one
 - amplitude to another?

Reverse Power Protection Maximum safe power that can be applied to the RF output Amplitude

Anticipate ____Accelerate ____Achieve

Range

Resolution

Accuracy

Switching Speed

Frequency Sweep

Step sweep

- accuracy
- number of points
- switching time

Ramp sweep

- accuracy
- sweep time
- resolution

Agilent Technologies

As a Local Oscillator

In-Channel Receiver Testing

Receiver Sensitivity

Frequency

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Out-of-channel Receiver Testing

Receiver Selectivity

Spurious Response Immunity

Output Power

Phase Noise

٠

٠

•

٠

٠

Non-linear Amplifier Testing - TOI

Basic CW Signals – Applications

Out-of-channel Receiver Testing - IMD

Basic CW Signals – Applications

Stimulus-Response Testing

Key Specs:

- Frequency Range
- Frequency Accuracy
- Frequency Ramp/step sweep
- Power sweep
- Sweep speed
- Output Power accuracy
- Residual FM

Anticipate ____Accelerate ____Achieve

Signal Generators

Basic CW Signals

- Block Diagram (RF and Microwave)
- Specifications
- Applications
- **Analog Signals**
 - Block Diagram (AM, FM, PM, Pulse)
 - Applications
- **Vector Signals**
 - •Block Diagram (IQ)
 - Applications

Analog Signals – Block Diagram

Add AM, FM, PM, and Pulse Modulation

Analog Signals – Block Diagram

Add internal modulation generator

Agilent Technologies

Analog Signals – Applications

Pulsed Radar Testing with Chirps

٠

٠

•

Signal Generators

Basic CW Signals

- Block Diagram (RF and Microwave)
- Specifications
- Applications
- **Analog Signals**
 - •Block Diagram (AM, FM, PM, Pulse)
 - Applications
- **Vector Signals**
 - Block Diagram (IQ)
 - Applications

IQ Modulation

- Good Interface with Digital Signals and Circuits
- Can be Implemented with Simple Circuits
- Fast, accurate state change

Adding the IQ modulator

Agilent Technologies

Baseband IQ signal generation

Analog Reconstruction Filters

Baseband Generator: Baseband Filters

Filtering Slows Down Transitions and Narrows the Bandwidth

Anticipate ____Accelerate ____Achieve

Agilent Technologies

I-Q Modulator Output **Synthesizer** n/2 VCO **≹** ₹ \sim Freq. ALC Control Driver • 0 Pattern DAC **RAM** and **Symbol** Mapping Reference DAC **Baseband Generator**

- Format Specific Signal Generation
- **Receiver Sensitivity**
- **Receiver Selectivity**
- **Component Distortion**

Digital Format Access Schemes

Anticipate ____Accelerate ____Achieve

Format Specific Modulation

GSM: A type of TDMA modulation Multiple users, same frequency, different time slots

Digital Receiver Sensitivity

Digital Receiver Sensitivity

Receiver Selectivity (Blocking Tests)

Component Distortion – Adjacent Channel Power Ratio

Component Distortion – Error Vector Magnitude

Anticipate ____Accelerate ____Achieve

Component Distortion – EVM

Measured EVM = -30 *dB*, 3.3%

Anticipate ____Accelerate ____Achieve

OFDM Signal -

400 MHz Bandwidth

Agenda

- The need for creating test signals
 - Aerospace Defense to Communications
- Generating Signals
 - No modulation
 - Analog Modulation
 - Composite Modulation
- Signal Generator Architecture
- Signal Simulation Solutions
- Summary

Remove Test Signal Imperfections

Sources of error – I/Q modulator, RF chain, IQ path **Result** – passband tilt, ripple, and roll off

Remove Test Signal imperfections – IQ flatness

Solution – measure vector signal generator and apply predistortion

Tradeoff – calculation time, valid calibration time

Typical application – wideband, multitone, and multicarrier

Anticipate ____Accelerate ____Achieve

Removing Test Signal Imperfections - IMD

Before Predistortion

After Predistortion

Measured in-band IMD = -40 dBc

Removing Test Signal Imperfections – Group Delay

Before Predistortion

EVM -30 dB, 3.3%

After Predistortion

EVM --34 dB, 2%

Signal Studio – Enhanced Multitone Up to 1024 tones Set relative tone phase **CCDF** plot

Non-linear Amplifier Testing

Intermodulation Distortion

- Improved IMD suppression (typically > 80 dBc)
- Correct generator with additional devices in the loop
- Lower overall cost-of-test for large # tones
- Same hardware for ACPR/NPR distortion tests

Set relative tone power

80 MHz correction BW

Anticipate ____Accelerate ____Achieve

SISO BBG and Fading Test at RF/BB

MIMO Receiver Test at RF/BB

Create MIMO signals with real-time fading for receiver test

PXB generates MIMO signals up to No BBG required for 4x2 with long playback MXG or EXG Rx0 Mobile E · F **B** F F F F Station)) Rx1 Cherge Record 3 2 Vector MXG, EXG or ESG used as PXB applies flexible real-time fading

RF up converters, one per receive antenna

Anticipate ____Accelerate ____Achieve

to MIMO signals

Agilent Technologies

Agenda

- The need for creating test signals
 - Aerospace Defense to Communications
- Generating Signals
 - No modulation
 - Analog Modulation
 - Composite Modulation
- Signal Generator Architecture
- Signal Simulation Solutions
- Summary

Agilent Portfolio Summary

Agilent Technologies RF Signal Generation

Millimeter Wave Signal Generation

• E8257D has the widest specified frequency range of any signal generator on the market: 250 kHz to 67 GHz

E8257D offers 8 different models of mm source modules covering
 50 to 500 GHz

•50 to 75 GHz
•60 to 90 GHz
•75 to 110 GHz
•90 to 140 GHz
•110 to 170 GHz

•140 to 220 GHz

•220 to 325 GHz

•325 to 500 GHz

Agilent Signal Studio & Embedded Software

Simplify Signal Creation – Validated & Performance Optimized

Cellular Communications

LTE-Advanced FDD/TDD LTE FDD/TDD MSR (under LTE) W-CDMA/HSPA/HSPA+ TD-SCDMA/HSPA GSM/EDGE/EDGE Evo cdma2000/1xEV-DO 802.11ac WLAN 802.11n WLAN 802.11a/b/g/p/j WLAN 802.16 WiMAX Bluetooth MB-OFDM UWB

Wireless

Connectivity

Audio/Video Broadcasting

ATSC CMMB / DTMB DAB/DAB+ DOCSIS DVB-T/T2/H/C/S/S2 FM Stereo/RDS ISDB-T/T_{SB}/T_{mm} J.83 Annex A/B/C S/T-DMB Detection, Positioning, Tracking & Navigation

GPS Glonass Galileo Pulse Builder General RF & MW

Toolkit Multitone Enhanced Multitone Noise Power Ratio Jitter Injection Phase Noise Impairment Noise (AWGN) Channel Emulation Analog & Digital Mod MATLAB

Platforms: RF/MW Signal Generators, Multi-Ch. BB Generator/Channel Emulator, DigRF Testers, Wideband ARBs, ADS, SystemVue, OBTs...

For Additional Information

Sources: http://www.agilent.com/find/sources

Signal Analyzers: http://www.agilent.com/find/sa

Recorded webcast : Back to Basics: Signal Analysis

Anticipate ____Accelerate ____Achieve

THANK YOU!

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Back to Basics Training Copyright Agilent 1 Nov 2012